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1.     INTRODUCTION 

The finite element analysis of general  shell  structures has been 
a very active field of research for a large number of years  [14, 29]. 
However,  despite the fact that many different shell  elements have already 
been proposed, the search for a shell  element capable of representing the 
general  nonlinear behavior of shells with arbitrary geometry and load- 
ing conditions in an effective and reliable manner is still continu- 
ing very actively. 

During recent years it has become apparent that two approaches for 
the development of shell  elements are very appropriate: 

- The use of simple elements, based on the discrete-Kirchhoff 
approach for the analysis of thin shells  [2, 5 - 9]. 

- The use of degenerated isoparametric elements in which fully 
three-dimensional  stress and strain conditions are degenerated 
to shell  behavior [2, 3, 5, 7, 17, 19, 24, 29]. 

The latter approach has the advantage of being independent of any 
particular shell theory, and this approach was used in ref.  [3] to 
formulate a general  shell  element for geometric and material  nonlinear 
analysis.    This element has been employed very successfully when used 
with  9 or,  in particular,  16 nodes.    However,  the 16-node element  is 
quite expensive, and although it is possible to use in some analyses 
only a few elements to represent the total structure (see Sections 4.2 
and 4.5), in other analyses still  a fairly large number of elements 
need be employed [5], 

Considering general shell  analyses, much emphasis has been placed 
onto the development of a versatile, reliable and cost-effective 
4-node shell  element [16, 17, 22,  28].    Such element would complement 
the above high-order 16-node element and may be more effective in 
certain analyses.    The difficulties  in the development of such element 
lie in that the element should be applicable in a reliable manner to 
thin and thick shells of arbitrary geometries' for general  nonlinear 
analysis. 

The objective in this paper is to present a simple 4-node general 
shell  element with the following properties: 

- the element is  formulated using three-dimensional  stress and 
strain conditions without use of a shell  theory; 

- the element is applicable to thin and thick shells and can be 
employed to model  arbitrary geometries; 



- the element is applicable to the conditions of large displace- 
ments and rotations but small strains, and can be used effec- 
tively in materially nonlinear analysis. 

The formulation of the element is quite simple and transparent, 
and the element has good predictive capability without containing 
spurious zero energy modes. 

In the next section of the paper we discuss some basic considera- 
tions with respect to the assumptions used, and in Section 3 we present 
the element formulation for nonlinear analysis.    The results obtained 
in numerical solutions that demonstrate the properties of the element 
are given in Section 4. 

2.    BASIC CONSIDERATIONS 

The formulation of the 4-node shell  element represents an 
extension of the shell element discussed in refs.  [2, 3], and we 
therefore use the same notation as in those references.    Also, to focus 
attention onto some key issues of the formulation, we consider in 
this section only linear analysis conditions. 

The geometry of the element, see Fig.  1,  is described using 
[2,  p.  255]: 

xi 

4 

I 
k=l 

h *x k nk xi 

4 

k-l 

akhk Xi (1) 

where the  h, (r^. ,r2) are the two-dimensional interpolation functions 

corresponding to node k; the r.  are the natural coordinates; and 

x. = Cartesian coordinates of any point in the element; 

l    k 
x. = Cartesian coordinates of nodal point k; 

V . = Components of director vector at node k (which is not ni necessarily normal to the midsurface of the element); 
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Figure 1    Four-node shell  element 
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and a.   is the shell thickness at node k, measured along the vector    V   . 

The left superscript is zero for the initial geometry of the element and 
is equal  to 1   for the deformed element geometry.    Note that the thickness 
of the element varies and the element is in general  non-flat. 

The displacements of any particle with natural  coordinates r. of the 

shell  element in the stationary Cartesian coordinate system are: 

ui 

4 4  » 
h,u.k 

k l 
+ 

r3 
T I akhk (- 

Q   k 
\ 

+ 0  k 
vli V 

< k=l 
(2) 

where the u.    are the nodal point displacements into the Cartesian 

coordinate directions, and the a.   and e,   are the rotations of the 

director vector °\l} about the °V1
k and °V2

k axes  (see Fig. 1). -n -1 

A basic problem inherent in the use of the above interpolation 
of the displacements, and the derivation of the strain-displacement 
matrices therefrom, is that the element "locks" when it is thin.    This 
is due to the fact that with these interpolations the transverse shear 
strains cannot vanish at all  points in the element, when it is subjected 
to a constant bending moment.    Hence, although the basic continuum 
mechanics assumptions contain the Kirchhoff shell assumptions, the 
finite element discretization is not able to represent these assumptions, 
rendering the element not applicable to the analysis of thin plates or 
shells  (see [2, D.  240] and [5, 7]).    To solve this deficiency, various 
remedies based on selective and reduced integration have been proposed 
[17, 22, 23] but there is still much room for more effective and reliable 
elements for general  nonlinear analysis. 

Considering our element formulation — because the problem lies in 
the representation of the transverse shear strains -we proceed to not 
evaluate these shear strains from the displacements  in Eq.  (2)    but 
to introduce separate interpolations  for these strain components. 
Since we consider non-flat shell elements, the separate int&rpnlations 
are performed effectively in a convected coordinate system.^  ' 

It) Note that in refs.   [2] and [3], the shell  element formulation is dis- 
cussed in the global stationary coordinate system, because all  displace- 
ment components are interpolated in the same way.    To emphasize that 
we use here stress and strain measures  in the convected coordinate 
system, we place a curl   (~) over these quantities. 

10 



The choice of the interpolation for the transverse shear strain 
components is the key assumption in our element formulation, because 
adequate coupling between the element displacements and rotations must 
be introduced and the element should not exhibit any spurious zero 
energy modes.    For our element we use, see Fig.  2, 

'13 

"23 

j (1 + r2) 

i» + ri> 

E13 

-23 

(1 

id 

r2] g13 

rl} e23 

(3) 

Since the kinematic relations for the above shear strains are not 
satisfied using Eq.  (3), we impose them using Lagrange multipliers 
[2, 27] to obtain 

7*       = 1 
2 T1J   t1d   dV     • ,13 r 

13 ill)« 

.23  r A [Z 
23      "-23 SI) dV w (4) 

where the T1J are the contravariant components of the Cauchy stress 

tensor [13, 15], the e• •  are the covariant components of the infini- 
'J 13 ?3 

tesimal strain tensor, the x     and \     are the Lagrange multipliers, 

the e?3 and cJ^ are the transverse shear strains evaluated using the 
displacement interpolations in Eq.  (2), and W is the potential  of the 

external  loads.    For the Lagrange multipliers we choose the following 
interpolations, 
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e13 interpolation 

e23 interpolation 

Figure 2 Interpolation functions for the transverse 
shear strains 
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X13    =    XA 5(r:) 5(1 - r2) + XC 5(^1  5(1 + rg) 

(5) 

X23    =    XU 6(r2) 6(1 - rx) + XD 6(r2)  6(1  + r}) 

where 6(...) 1s the Dirac-delta function.    This represents a weakening 
of the Laqrange multiplier constraint in Eq.  (4)  [10].    Substituting 
from Eq.  (5) into Eq.  (4) and invoking that 6n* = 0 gives the distinct 
constraints 

'U e13 at A 
13 

J)I 
e13 at C 

^23 •    I 
01 
23 at 0 

^23 
s    e, 23 at B 

(6) 

Hence, the complete element stiffness matrix is calculated using the 
functional 

1 
2 *1j   hi dV -    W (7) 

with stress and strain components in convected coordinates and 

- Eqs.  (1) and (2) to evaluate the strain components e,,, e22 

and £-. p; 

Eq.  (3) to evaluate the strain components £,.,  e23; and 

Eq.  (6) to express the variables E, 3> e-j,, £„- and e23 in 

terms of the nodal  point displacements and rotations of Eq.  (2) 
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Considering the reDresentation that we have chosen for the trans- 
verse shear strains, we can make the following three important obser- 
vations: 

1) The element is able to represent the six rigid body modes. 

The element contains the rigid body modes because zero strains are 
calculated in the formulation when the element nodal  point displacements 
and rotations correspond to an element rigid body displacement.    This can 
be verified by using Eqs.  (1) to (6) to evaluate the strains, but more 
easily we can use the fact that the 4-node shell  element of ref.  [3] 
satisfies the rigid body mode criterion.    Hence,  for a rigid body dis- 

placement the e,- and i~2 are zero» ^ron which it follows that also 

the shear strains in Eq.   (3) are zero, and the rigid body mode criterion 
is satisfied. 

2) The element can approximate the Kirchhoff-Love hypothesis of negli- 
gible shear deformation effects and can be used for thin shells. 

Various demonstrative solutions are given in Section 4. 

3) Based on our studies the element does not contain any spurious zero 
energy modes  (using a "full" numerical  integration). 

We reach this observation by studying the strains along the element 
sides.    If the element were to contain a spurious zero energy mode, the 
strains along every side should vanish for a displacement pattern (to be 
identified) other than the displacements corresponding to a true rigid 
body mode.    However, such displacement pattern could not be identified. 

Considering the practical  use of the element the interpolation 
employed for the transverse shear strains shows that £•,, is constant 

with  r, and in general   discontinuous at r, = + 1  (between elements), 

and similarly e2- is constant with r« and in general  discontinuous 

at r? = + 1.    As a consequence, the accuracy with which transverse 

shear stresses are predicted depends to a significant degree on the 
mesh used and the geometric distortions of the elements.    However, 
our experience is that the bending stress predictions are relatively 
little affected by element distortions (see Section 4). 

To employ Eq.   (7), we also need to use the appropriate constitutive 
relations: 

xiJ    =    Cijklekl (8) 
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jxijkl where C k      is the fourth-order contravariant constitutive tensor in the 
lown in the local 

1, 2, 3, with the 

convected coordinates r..    The constitutive law is known in the local 

Cartesian system of orthonormal  base vectors e.,  i 
33 1 

condition f     equal  to zero, see Fig.   3 (refer to  [2], p.  258).    Denoting 

this constitutive tensor by cmnop, the constitutive tensor for Eq.  (8)  is 
obtained using the transformation 

:ijk;, 
(i' '••>   (£J-iJ (£k •'§,) <££ • ep) £ 

mnop 
(9) 

where the g   are the contravariant base vectors of the convected coordi- 
nates r..    These vectors are calculated using the covariant base vectors 

a., where 

3°x 
-9i * IF: (10) 

with 0    from Eq.  (1)  and the following relations, 

'1j 

and 

=   gi ' !: 

**   h 

(11) 

.U   - M 

IJI 
(12) 

where D1J  is the cofactor of the term g.. in the matrix of the metric 

tensor and  |J_|  is the determinant of the Jacobian matrix at the point 
considered. 
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^3 19,1   ' £1 
i2 x ^3 

£2 x tal 
; eg = e3 x e, 

Figure 3 Local Cartesian coordinate system used 
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TOTAL LAGRANGIAN FORMULATION 

The large displacement formulation of the shell element is based on 
the derivation given in ref. [2, Section 6.3.5], and the concepts and 
interpolations presented in the previous section. 

The geometry of the element at any time t is defined as in Eq. (1) 
t k t k but using the nodal point coordinates, x., and director vectors V , at 

(*) i -n 
time t/' 

-v    h  tvk    3   .  t.,k 
xi " hk  xi + — \ \     Vni (13) 

where we imply summation over k. The displacements, u., and incremental 

displacements, u., of a particle of the element at time t are hence given by 

ui 

k  t k    3   h /t..k   Oyk » 
hk  ui + T ak hk ( Vni " Vni } 

\A   + 4" \ \ ("tv2i ak + % 6k> 

(14) 

t k k where the    u. are the nodal   point displacements at time t, the u. 

are the incremental  nodal  point disDlacements from the configuration 
t k     t k at time t, and the variables    Vp.»    V,., a.   and Q.   are defined as in 

Eq.   (2) but referred to the configuration at time t. 

This kinematic description implies the following hypotheses: 

•The director vectors remain straight during the deformations. 

•The "thickness" of the element measured along the director 
vectors  remains  constant during the deformations; hence only 
small strain conditions are considered. 

Using the assumptions  in Eqs.   (13) and (14) the geometric and material 
nonlinear response is analyzed using an incremental  formulation [2], in 
which the configuration is sought for time (load step)  "t + At", when the 
configuration for time "t" is  known.    The basis of this incremental 

vn Note that the superscript t on a variable denotes the configuration 
at time t in the incremental solution and does not imply a dynamic 
analysis. 
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formulation is the use of the virtual work principle applied to the 
configuration at time t+At.    In essence, two approaches can be employed 
leading to the updated Lagrangian and the total  Lagrangian formulations. 
These approaches are, from a continuum mechanics point of view, equivalent, 
and in the following we develop the governing finite element relations for 
the total  Lagrangian formulation. 

The principle of virtual work applied to the configuration at time 
t+At is 

t+At ~ i j 
0^ 

-t+At~ 
6      (fij "dV t+At, 

(15) 

where the       nS1J are the contravariant components of the second 

Piola-Kirchhoff stress tensor at time t+At and referred to the configuration 

at time 0, and the       Pe..    are the covariant components of the Green- 

Lagrange strain tensor at time t+At and referred to time 0.    Both sets of 
tensor components are measured in the convected coordinate system r., 

i  = 1,2,3.    The external   virtual work is given by   '      R and includes 
the work due to the applied surface tractions and body forces. 

For the incremental  solution, the stresses and strains are decomposed 

into the known quantities, QS1J and QI-- , and unknown increments, QS J 

and ne.., so that 

t+At~ij 
0 

t+At. 
0£ij 

t;ij 
o 
t~ 
0eij 

;u 

0e1j 

(16) 

(17) 

In addition, the strain increment can be written as a linear part, 

n§.., and a nonlinear part, rj\--, hence 
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e,,    +   nTh 0Eij    "   Oeij    T   0"1J (18) 

Substituting from Eqs.   (16) to (18) into Eq.  (15)  and using the 

linearized expressions QS1J = QC1J      0e.-| and 6Qe.. • 60e\.,we obtain 

the linearized equation of motion 

[OC^1  cikl 6oii .  °dV     •       /p1J«Aj0d" 

=    t+AtR oS1JVijCdv   * (19) 

This equation is the basic equilibrium relation employed to develop the 
governing finite element matrices.    For the actual solution of problems. 
it is frequently important to use equilibrium iterations, but the finite 
element matrices and vectors used in these iterations can be derived 
directly from the matrices obtained using Eq. (19)  [2].    Note that 
~i ikl t"33 

nC J      is now obtained using Eq.  (9) with the condition nS      •    0, which 

implies the more natural  condition    T      =0 only in the small strain case, 

The basic problem of the finite element discretization of Eq.  (19) 
lies in expressing the strain terms of Eq. (19) in terms of the finite 
element interpolations.    Using the definition of the Green-Lagrange 
strain components 

0£ij ~    2 ( ^i h - V (20) 
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and the relations in Eqs. (13) and (14) we obtain 

o«ii = hk,i % ' m + -rVk.1 (-"k 
4ii • %+ Bk & -ii'    <21-a> 

t„p tup • 
osn • 4- hk,i h

P,i ^ • * * 2 hk,i hP,i SP(-°P T5 ' s»+ 8P % ' ^ 

+ T-    hk,i h
P,i 

ak a
P K ^  +   «k M> Up *v§ H^'l   <21"b> 

(1 - 1,2) 

with the notation   h.   .    = 
K 11 

it T L. L. I, 
-^f. u I   =   [u*   u<   «*], and 

0e12 T  [hk,2   'ii -Hk
+hk.l   *i2 •   *k  + 

t„k     t t„k      t. 
-rhk,2   akK   V2-   £l + 6k 3   -V   + 

4 hk,i  ak K ^ • % +. B y • v] 
il2 " T[>,I h

P,2 a-k-a, 

(22-a) 

^\,lhp,2    ap ("«p %P • \ + «P M • ik> + 

^-hk,!hp,2 H t-k *«f • *P*• S M -V + 

(r3)  . ,        twk „    t„kv    .  /        t.,p   ,   -    tyP^ i 
"4~"k,l "p,2 ak ap v ak   12 

(22-b) 
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Further, we obtain for the transverse shear strains, using Eqs.   (3) 

and (6), 

0e13   =   *T" (l+r2)   [%  (u] - u2)**^  (-., *,% • B] a, tv]1 

Mi)] V2 Ml +    62a2 

+   T   °   " r2)[tg3i  (U? " u?> + T   ^1   ("V4 "V21 + »- a'  "V .3%       1     t _C t„4 . ty    4 
4 a4    vli 

-a   a, *v2| + 6, a- 33      2i        3    3 *»?,)] 

(23-a) 

>"13   -   jf (1 + r2) [<-«, a, ^ • Bl a, tv]1 - a2 a2 Sf, •   s2 a2 %) 

(u] - u*)J 

+    3T    (1"  r2}[(-V4 ^i  +  V4 Mi  " °3 a3 Si + 63 '3^1)  (u? " «1>] 

(23-b) 

and, 

0e23 •  T   (1+rl>   [^31   '"! - "1> + T  4i (-°lal 'v21 + V, 'vil 

- °4a4 'V21  +    64 a4 Ml*] 

• T    ""D   [VSl     (U1  "  A> + T    *92i   (-°2a2 ^21  + B2a2 VU 

ft] t„3 t„> 
a3a3    V2i +    B3a3    V^ 

(24-a) 
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0^23    =    ~k    (1 +rl) [(-« lal v2i Jlal Xi •    a4a4 M, + B 4a4 Mi> ("I - 4)] 

32 (i -n) [,-. a    V 
2a2    V2i *2a2 Mi a3a3 

tV^. + 63a3 
t„3 

i'  v i *] 
(24-b) 

Note that, since we assume the thickness of the shell to be constant, 

the strain Q£33 through the element thickness is zero. 

The expressions in Eqs. (21) to (24) are substituted into Eq. (19) 
which in the standard manner yields the linear strain incremental stiffness 

matrix J<. , the nonlinear strain (or geometric) incremental stiffness matrix 
t t 
JL,.   and the nodal point force vector -J in the finite element incremental 

equilibrium relations  [2], 

((A   +   0%.}   ^ 
t+AtR  -JF (25) 

The element matrices in Eq.  (25) correspond to five degrees of 
freedom per node, see Fig. 1, but in some applications it is convenient 
to use instead of a.   and $.   three rotations about the global coordinate 

axes (see Section 4.6).    In this case, we simply transform the matrices 
of Eq.  (25) in the standard manner [2]. 

The element developed can be used for nonlinear dynamic analysis of 
shells with any time integration method [2], using a consistent mass matrix 
calculated in the standard way or a lumped mass matrix with the diagonal terms 

mii 

0    0.. 0 0 
and m,. 

J J 4      a"u "'jj        16 
of freedom,  respectively. 

V 2 (a. )    for translational  and rotational  degrees 
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4.    NUMERICAL TESTS  AND EXAMPLE SOLUTIONS 

We have implemented our shell  element in the ADINA computer program 
and have performed various numerical  tests to study the predictive capa- 
bilities of the element.    The following solutions were all  obtained using 
2x2 Gauss integration in the r- = 0 surface of the element, and 2 and 4 

point Gauss integration in the r_ direction,  for elastic and elasto-plastic 

analyses,   respectively. 

4.1    Some simp! e tests 

As a first step to test the element, the eigenvalues of the stiffness 
matrices of undistorted and distorted elements were calculated.    In all  cases, 
as expected, the element displayed the six rigid body modes and no spurious 
zero energy modes. 

4.1 .a    Patch tests 

For the patch test [2, 18] the mesh shown in Fig. 4 was used.    In the 
first analysis the mesh was  loaded with the constant moment indicated, and a 
constant curvature (linear distribution of rotations) was obtained for both 
plate thickness in the two plate directions.    The transverse displacements 
predicted by the model were - as  expected — those of Kirchhoff-Love plate 
theory at nodes  7 and 8. 

In the second analysis the rotational  degrees of freedom were deleted 
and the mesh was subjected to shear forces.    As expected,  for both plate 
thicknesses a linear distribution of transverse displacements was obtained. 

In the third analysis the mesh was subjected to an external twisting 
moment.    In the thin plate analysis, constant curvatures were obtained in 
both plate directions,and the transverse displacements agreed with the 
analytical  thin plate solution.    In the thick plate analysis, a slight 
non-symmetry in the displacement response (the third digit) was obtained 
due to the unsymmetric representation of the transverse shear deformations. 
This non-symmetry is not observed    if the shear deformations  are suppressed 
(which corresponds to thin plate theory) by choosing a large value for the 
shear correction factor k  [2, p.  236]  (or when using rectangular elements 
in the mesh). 

Finally, it should be noted that the patch test is of course passed 
for the three membrane stress states (T,-,, T?2 ar>d T-.^ constants). 

4.1.b    Cantilever linear analyses 

A cantilever of unit width, thickness 0.1  and lengths  10 and 100 
was subjected to a tip bending moment.    The structure was modeled using one 
single element and two distorted elements as shown in Fig.  5.    The results 
obtained in these analyses  for the displacements and rotations at the 
cantilever tip and the stresses were those of Bernoulli  beam theory. 
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Figure 5 Cantilever subjected to tip bending moment 
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Next, the cantilever in Fig. 6(a) was analyzed for the transverse 
tip load shown.    Using 4 equal size elements to idealize the cantilever, 
again good results were obtained when compared with beam theoretical 
results. 

Finally, the elements modeling the cantilever were distorted as shown 
in Fig. 6(b)  for a thin and a thick cantilever.    The results show that 
the transverse displacements and normal  bending stresses are almost 
insensitive to the element distortions.    However, the calculated trans- 
verse shear stresses (not shown in the figure)  are not accurate. 

4.1.c    Linear analyses of a simply-supported plate 

A simply-supported plate was considered for a static and a fre- 
quency analysis using a consistent mass matrix.    To model one quarter 
of the plate a 4x4 mesh of equal  elements was used.    Figure 7 gives 
a comparison of the numerically and analytically predicted results.    The 
same plate was also analyzed using the distorted element mesh also shown 
in Fig.  7(a) and the results of Fig.  7(c) were obtained. 

4.1.d    Analysis of a rhombic cantilever 

The rhombic cantilever shown in Fig.  8, fixed at one side and sub- 
jected to constant pressure was analyzed using a 4x4 element mesh.    The 
results for the transverse displacements at six locations are compared 
against the solutions obtained using the DKT triangular element of 
ref.  [6], experimental measurements  [1] and using the 16-node isopara- 
metric element (with 4x4x2 Gauss integration).    In all  cases a one 
step geometric nonlinear analysis with equilibrium iterations was per- 
formed.    Good correspondence between the experimental  results and the 
solution obtained using our new 4-node element is observed. 

4.2 Linear analysis of a cylindrical   (Scordelis-Lo) shell 

The shell  structure shown in Fig. 9 has frequently been used to 
test the performance of shell elements [12].    Figure 9 shows the solutions 
obtained with our elements.    In each of the solutions uniform meshes with 
equal  sized elements were employed over one quarter of the shell.    Solutions 
obtained using the 3-node DKT triangular element [25] and the 16-node iso- 
parametric element [25] are also shown. 

4.3 Linear analysis of a pinched cylinder 

The pinched cylinder problem shown in Fig. 10 was also frequently 
analyzed to test shell  elements.    Figure 10 shows the convergence behaviour 
obtained with our new element, when comparing the finite element solutions 
with the solution given in refs.  [11, 21].    Note that using the isoparametric| 
shell  element of ref.   [3], also a fairly large number of degrees of freedom 
are required to predict the response of the cylinder accurately. 
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Figure 6    Response of a cantilever subjected to transverse tip load, 
stresses shown are those at the Gauss  integration stations 
r$ = 0.57735; Tpp, is the principal  stress in the distorted 
mesh, and its direction was always less than 11  degrees from 
the X2 axis. 
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Figure 7    Linear analysis ot a simply-supported square plate, the parameter 
of distortion, A, was equal to 2.50. 
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Figure 7 continued 
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Figure 8 Response of rhombic cantilever subjected to constant pressure 
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Figure 9    Linear analysis of a cylindrical shell subjected to dead weight. 

The 2x1  result refers to the solution obtained with two 16-node 
shell elements spanning from C to B.    The 16x16 result refers to 
the use of 512 equal triangular DKT elements. 
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4.4 Large deflection analysis of a cantilever 

The cantilever shown in Fig.  11 was analyzed for its  large displace- 
ment and large rotation response.    This is a typical  problem considered 
to test the geometric nonlinear behaviour of beam and shell  elements   [25]. 
Figure 11  shows  also the models used in the analysis. 

The first two models are single element, cubic and parabolic iso- 
parametric degenerate shell  element models.    Model  I predicts the response 
of the cantilever very accurately, whereas model  II yields an accurate 
response solution in linear analysis but locks once the element is curved 
in the nonlinear response solution.    This observation is  in accordance with 
the results  reported in ref.   [5]. 

The same nodal point layouts were next employed for models III and 
IV using our new 4-node shell element.    Figure 11  gives also the results 
obtained with these models.    It is seen that model   III yields an accurate 
large displacement response prediction, and even model  IV yields quite 
accurate results up to about 60 degrees of rotation.    The computer time 
required in these analyses were only different using models I,  III and 
IV. 

Another important  result is shown in Fig.  12.    As  reported in ref.   [5], 
the cubic shell  element is sensitive to "in-plane" distortions; and hence, 
it is interesting to study the effect of using a distorted element mesh 
in the analysis of the cantilever.    Figure 12 summarizes the results 
obtained using the one cubic element and three 4-node elements with a 
nodal  layout that corresponds to distorting the elements.    It is seen that 
the predictive capability of our new 4-node element is considerably less 
sensitive to the element distortions. 

4.5 Geometric nonlinear response of a shallow spherical shell 

Figure 13 shows the spherical  shell  that was also analyzed in ref.  [3] 
with one cubic shell  element, modeling one quarter of the shell.    To test 
our new 4-node shell  element, the same nodal  point layout as in ref.  [3] 
was  used, giving a mesh of nine elements.    Figure 13 shows the response 
calculated, including the post-buckling response (not reported in ref.   [3]) 
with the automatic load stepDing algorithm of ref.   [4].    Good correspondence 
with the analytical solution of Leicester [20] and the solution of Horrigmoe 
[16] was obtained.    The solution with the 16-node element was almost twice 
as expensive as the 4-node element solution (using in both cases the same 
parameters for the automatic step-by-step solution algorithm). 

4.6 Linear buckling analysis and large deflection response of a simply- 
supported stiffened plate 

The stiffened plate shown in Fig.  14 was analyzed for its buckling 
response.    Since we expect the buckling mode to be symmetric [26] only one 
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quarter of the plate is modeled using symmetry boundary conditions.    The 
model  consists of nine 4-node shell  elements and three 2-node isoparametric 
beam elements.    At the nodes where a shell element connects to a beam 
element, three rotational  degrees of freedom aligned with the global axes 
are considered for the shell   element.    In order to avoid locking of the 
isoparametric beam elements, one point Gauss integration along the beam 
axes was used.    This does  not introduce spurious zero energy modes in the 
model, although the bending stiffness of the beam is under-estimated. 

The linearized buckling problem was  solved as  described in [4, Eq.  (37)] 
and we obtained 

or    (finite element solution) _cr 
ocr (analytical solution) 1,02 

Next, an initial imperfection with the shape of the first buckling 
mode and a maximum amplitude of 1/5th of the plate thickness was intro- 
duced.    Figure 14 shows the large deflection response of this model  as 
calculated using the automatic load stepping scheme of ref.   [4] with a 
tight enerqy convergence tolerance. 

4.7 Analysis of elasto-plastic response of a circular plate 

The thin circular plate shown in Fig. 15 was analyzed for its 
elasto-plastic response, when subjected to a concentrated load at its 
center.    The plate is simply-supported with its edges restrained from 
moving in its plane. 

In a first solution, the plate model  shown in Fig.  15(a) was 
used to analyze the plate assuming small  displacements  (materially- 
nonlinear-only conditions).    Figure 15 shows that the theoretical 
collapse load is over-estimated, but for the coarse mesh used, the 
predicted response is quite reasonable. 

In a second solution,  large displacements and elasto-plastic 
conditions were assumed and in this case the stiffening behaviour of 
the plate shown in Fig.  15(b) was predicted.    In order to have a com- 
parison, also the model  of five axisymmetric 8-node elements shown in 
Fig.  15(a) was solved.    Fioure 15 shows that both models predict in 
essence the same response; however, in this case relatively little 
plasticity was developed for the range of displacements considered. 

4.8 Dynamic analysis of an elastic-perfectly plastic, simply-supported 
square plate 

One quarter of the plate shown in Fig. 16 was modeled using sixteen 
4-node elements.    The central  difference method was used in the time 
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integration to calculate the time history response when the plate was 
subjected to a step uniform pressure.    A lumped mass discretization 
was employed. 

In order to assess the effect of the lumped mass matrix on the 
integration step (At), the smallest Deriod of the finite element model 
was calculated using a consistent mass matrix and a lumped mass matrix; 
we obtained 

TLUMPED 
min slJ 

TC0NSIST. 
min 

For the transient solution we used the material-nonlinear-only 

formulation and At = 2x10" . Figure 16 compares oredicted vertical 
displacement of the center of the plate with the solutions given in 
[3]. 

CONCLUSIONS 

A new four-node non-flat general  nonlinear shell  element has been 
presented with the following important element properties: 

- The element is formulated using three-dimensional  continuum 
mechanics theory; hence,the use of the element is not restricted 
by application of a specific shell theory. 

- The element is  reliable and has good predictive capability in 
the analysis of thick and thin shells . 

- The amount of computations required to calculate the element 
stiffness matrix are ^ery closely those that are used in standard 
isoparametric formulations.    The computer time used could be 
reduced considerably in elastic analysis by using analytical 
integration through the element thickness. 

In this paper we have presented the formulation and some appli- 
cations of the element.    The solution results obtained are most encouraging, 
but a formal mathematical  convergence study of the element would be very 
valuable, and we are currently pursuing such research. 

Finally,  it should be noted that the element presented here provides 
a \/ery attractive basic formulation that could be extended to large strain 
analysis and analysis of composite shells.    Also, the concepts applied here 
to formulate a 4-node element could equally well  be employed in an effective 
manner to formulate higher-order shell  elements. 
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